F syndrome (acropectorovertebral syndrome) is a dominantly inherited skeletal dysplasia affecting the hands, feet, sternum, and lumbosacral spine, which has previously been described in only two families. Here we report a six generation Turkish family with a related but distinct dominantly inherited acropectoral syndrome. All 22 affected subjects have soft tissue syndactyly of all fingers and all toes and 14 also have preaxial polydactyly of the hands and/or feet. In addition, 14 have a prominent upper sternum and/or a blind ending, inverted U shaped sinus in the anterior chest wall. Linkage studies and haplotype analysis carried out in 16 affected and nine unaffected members of this family showed that the underlying locus maps to a 6.4 cM interval on chromosome 7q36, between EN2and D7S2423, a region to which a locus for preaxial polydactyly and triphalangeal thumb-polysyndactyly has previously been mapped. Our findings expand the range of phenotypes associated with this locus to include total soft tissue syndactyly and sternal deformity, and suggest that F syndrome may be another manifestation of the same genetic entity. In mice, ectopic expression of the geneSonic hedgehog(Shh) in limb buds and lateral plate mesoderm during development causes preaxial polydactyly and sternal defects respectively, suggesting that misregulation ofSHH may underlie the unusual combination of abnormalities in this family. A recently proposed candidate gene for 7q36 linked preaxial polydactyly is LMBR1, encoding a novel transmembrane receptor which may be an upstream regulator of SHH.
Sheehan’s Syndrome (SS) is defined as pituitary hormone deficiency due to ischemic infarction of the pituitary gland as a result of massive postpartum uterine hemorrhage. Herein, we aimed to investigate the roles of Factor II (G20210A), Factor V (G1691A), MTHFR (C677T and A1298C), PAI-1 4G/5G, and TNF-α () gene polymorphisms in the etiopathogenesis of SS. Venous blood samples were obtained from 53 cases with SS and 43 healthy women. Standard methods were used to extract the genomic DNAs. Factor II (G20210A), Factor V (G1691A), and MTHFR (C677T and A1298C) polymorphisms were identified by real-time PCR. PAI-14G/5G and TNF-α () gene polymorphisms were detected with polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) methods. According to statistical analysis, none of the polymorphisms were found to be significantly higher in the SS group compared to the control group. Hence, we suggest that genetic factors other than Factor II, Factor V, MTHFR, PAI-1, and TNF-α gene polymorphisms should be researched in the etiopathogenesis of SS.